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Five-step syntheses of (R)-pipecolic acid and (R)-proline are described, respectively, from cyclohexene
and cyclopentene. The key step involves the organocatalytic a-amination of functionalized aldehydes.
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Cyclic amino acids are important building blocks in organic syn-
thesis and occur in numerous natural products. For example, pipe-
colic acid moiety, also known as homoproline, is present in FK506,1

Neamphamide2 or Penasulfate A3 whereas proline moiety can be
found in Dolastatine 144 or Virginiamycin M2.5 Incorporated into
peptides, these cyclic amino acids confer rigidity6 to the proteins
thus modifying biological activities. In this context, the asymmetric
synthesis of pipecolic acid and proline is of importance and several
synthetic approaches have been reported in the literature7 based
on enzymatic reactions,8 derivatization of natural amino acids or
carbohydrates,9 asymmetric reactions as alkylation of chiral
glycine enolates,10 Strecker reactions,11 Sharpless epoxydation12

or catalytic hydrogenation.13

In connection with our ongoing program on syntheses of cyclic
amino acids via electrophilic amination14 and organocatalysis,15

we have been developing a new enantioselective synthesis of such
cyclic amino acids using the organocatalytic amination reaction16
ll rights reserved.
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of functionalized aldehydes and subsequent cyclization. We
describe here the syntheses of (R)-pipecolic acid and (R)-proline
in high enantiomeric purities and on possible multigram scales,
from commercially available cyclohexene and cyclopentene,
respectively.

The key step of our retrosynthetic approach is the organocata-
lytic a-amination of aldehydes 3 for the stereoselective formation
of the C–N bond (Scheme 1).

The aldehydes 3, functionalized with an acetal was derived
from the corresponding cycloalkenes 4. a-Amination of 3 and sub-
sequent reduction of the aldehyde moiety led to the aminoalcohols
2 which are the direct precursors of the cyclic amino acids 1. The
cyclization is based on a reductive amination step which occurred
without racemization of the newly created stereogenic center.

The functionalized aldehydes 3a and 3b were obtained, respec-
tively, from cyclohexene and cyclopentene via an ozonolysis reac-
tion in the presence of methanol as described in the literature.17
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Scheme 2.

Table 1

Entry Substrate Catalyst Time, temperature
(�C)

Product Yield
(%)

eea

(%)

1 3a L-Pro 25, 40 min 5a 72 91
2 3a L-Pro 0, 16 h 5a 76 94
3 3a L-ACA 25, 7h 5a 74 80
4 3a L-ACA 0, 44 h 5a 32 70
5 3b L-Pro 25, 1 h 5b 66 84
6 3b L-Pro 0, 16 h 5b 73 84
7 3b L-Pro �10, 16 h 5b 33 85

a Determined by HPLC analysis using a JASCO PU 2089 plus apparatus and a
CHIRACEL AD-H column.
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Then, we examined the organocatalytic a-amination step of alde-
hydes 3 under various conditions. The reaction was carried out in
acetonitrile, using dibenzylazodicarboxylate (DBAD) as a source
of electrophilic nitrogen and different organocatalysts (10 mol %).
The hydrazino aldehydes which are formed were reduced in situ
after the amination step in order to avoid epimerization of the
enolizable products giving the corresponding hydrazino alcohols
5. After a flash chromatography purification, the enantiomeric
excesses were determined by chiral HPLC analysis (Scheme 2,
Table 1).

We first studied the organocatalytic electrophilic amination18 of
6,6-dimethoxyhexanal 3a. When L-proline was used as catalyst at
room temperature, 5a19 was obtained in 72% yield and 91% ee (en-
try 1). Lowering the temperature to 0 �C improved slightly the
enantioselectivity to 94% (entry 2). The use of L-azetidine carbox-
ylic acid (L-ACA) as an efficient organocatalyst for the a-amination
of aldehydes and ketones was previously reported.15,16d In this
case, the enantiomeric excess was lower at room temperature
(entry 3) and the kinetic of the reaction dropped at 0 �C with
concomitant racemization (entry 4).

Reaction with 5,5-dimethoxypentanal 3b was less enantioselec-
tive. Comparable results were observed when the reactions were
run at room temperature or at 0 �C and 5b20 was obtained in good
yields and 84% ee (entries 5 and 6). When the reaction was per-
formed at �10 �C, the enantiomeric excess was identical to those
previously observed but the chemical yield was very moderate
(entry 7).

Thus, the hydrazino alcohols 5a and 5b were engaged in a three
step hydrogenation sequence (Scheme 3).

The benzylcarbamates were removed by hydrogenolysis in the
presence of Pd/C (5%) and the cleavage of N–N bond was achieved
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2- H2, PtO2.H2O, TFA
H2O, r.t., 24 h

Scheme
by addition of Raney-Ni to the reaction mixture. The crude amino
alcohols were directly submitted to the cyclization step. The reduc-
tive amination was conducted in the presence of trifluoroacetic
acid and PtO2�H2O in water under hydrogen atmosphere. 2-
Hydroxymethyl piperidinium and pyrrolidinium trifluoroacetates
6a and 6b were both obtained in 95% yield from the corresponding
hydrazino alcohols 5 completing the sequence without purification
of the intermediates.21 Final oxidation using KMnO4 in aqueous 3 N
H2SO4 provided the cyclic amino acids. (R)-Pipecolic acid 1a and
(R)-proline 1b were isolated without racemization22 in 69% and
66% yields, respectively, after elution on Dowex 50W-X4 ion-
exchange column.

In conclusion, we have developed a green straightforward ac-
cess to unnatural cyclic amino acids using natural proline as the
source of chirality and as the organocatalyst for the stereoselective
formation of the C–N bond. It is noteworthy that (S)-proline is in-
volved in the synthesis of its enantiomer. (R)-Pipecolic acid and
(R)-proline were obtained, respectively, in 50% yield and 94% ee
from 6,6-dimethoxyhexanal and in 41% yield and 84% ee from
5,5-dimethoxypentanal. Wider application to the synthesis of
elaborated cyclic amino acid derivatives is currently in progress.
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